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a b s t r a c t

A transmission line analysis is presented for the axial current collection in tubular solid oxide fuel cells
(SOFC). Closed form analytical solutions are obtained for two modes of current collection: (1) Current
collection at one end. (2) Current collection across opposite ends. The analysis shows that cell resistance
is lower for current collection at one end compared to that at the opposite ends, with the best case sce-
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nario being current collection at both ends. In addition, the analysis shows that for the case of tubular
cells, performance may not indefinitely increase with increasing temperature. Experimental data are
presented on planar and tubular cells that demonstrate significant differences in temperature depen-
dence. It is projected that under certain conditions, performance of tubular cells may actually decrease
with increasing temperature. A design of tubular cells with spines which can substantially lower current

bed.
ortable power
istributed power

collection losses is descri

. Introduction

Currently both planar and tubular geometries of solid oxide
uel cells (SOFC) are under development by various organizations.
he planar geometry is primarily being developed for large scale
pplications, ranging between ∼1 and >10 kW. The modularity of
OFC stacks allows for the construction of hundreds of kW or
ven MW class systems. Two types of tubular geometries are cur-
ently under development. The first is the Siemens–Westinghouse
esign, in which cathode-supported cells are used with the elec-
rolyte covering part of the cylindrical surface except for a strip for
nterconnection and anode covering part of the electrolyte surface,

hich is electrically isolated from the interconnection/cathode [1].
ell to cell contact is made along the length of the cell using a nickel

elt. Thus, current flow through the support electrode (cathode)
s ideally circumferential. Systems as large as 200 kW have been
emonstrated. The second design uses anode-supported cells of
xi-symmetric geometry, in which current collection is at the ends
f the cell [2]. In this second design, current flow through elec-
rodes is along the length of the cell. In this geometry, the longer
he cell, the greater are the losses associated with current collection.

hus, in this geometry, the design considerations need to address
urrent collection losses. This approach has been primarily used
or portable power sources of approximately 20–200 W in size,
lthough larger units of several kW in size have been made and
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tested. For portable power applications, the cells are typically a
millimeter in diameter, and often called micro-tubular SOFC [3,4].

Several authors have addressed the issue of current collection in
tubular SOFC. The models vary in degree of complexity and detail.
Current collection in tubular SOFC of the Siemens–Westinghouse
design has been recently addressed [5,6]. Current collection in
micro-tubular SOFC of ∼1 mm in diameter and ∼1 cm in length has
been modeled using simple equivalent circuits [7,8]. Detailed mod-
els which take into account momentum, heat, and mass transport
and electrochemical coupling have been developed by Cui et al.
[9,10] and Zhu and Kee [11]. The analysis by Zhu and Kee [11] also
determines species concentrations along the length of the cell.

All of the reported models provide numerical solutions. The ones
which take into account detailed transport and multi-dimensional
nature of the problem, are not amenable to closed form analyti-
cal solutions. Numerical approaches are thus necessary to address
such complexities. If the objective is to obtain closed form solu-
tions, however, simplifying assumptions are necessary. Closed form
solutions are very useful as they allow the evaluation of the role of
various parameters on performance with considerable ease, and
also have predictive capability often not possible with numerical
solutions.

The objective of this manuscript is to provide an analysis of
axial current collection in tubular cells in which cell length is an

important consideration. The analysis is based on a transmission
line model, which lends itself to simple second order, ordinary dif-
ferential equations resulting in closed form analytical solutions. The
analysis takes into account the electrolyte resistance, cathode and
anode polarization resistances, and anode and cathode electronic

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:anil.virkar@utah.edu
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Nomenclature

�e ionic resistivity of the electrolyte (� cm)
te electrolyte thickness (cm)
�a electronic resistivity of the anode (accounting for

any applied current collection layers) (� cm)
ta anode thickness (including any applied current col-

lection layers) (cm)
�c electronic resistivity of the cathode (accounting for

any applied current collection layers) (� cm)
tc cathode thickness (including any applied current

collection layers) (cm)
�s

a geometric factor of anode spine
�s

c geometric factor of cathode spine
� cell length (cm)
Ra

ct anode polarization resistance (� cm2)
Rc

ct cathode polarization resistance (� cm2)
ϕa(x) anode potential at x (V)
ϕc(x) cathode potential at x (V)
Eo Nernst voltage (V)
Et terminal voltage (V)
I(x) current per unit circumference at position x

(A cm−1)
I(0) net current per unit circumference measured in the

external circuit (A cm−1)
Ic(x) current per unit circumference through the cathode

along the length of the cell (A cm−1)
Ia(x) current per unit circumference through the anode

along the length of the cell (A cm−1)
Q activation enthalpy (kJ mol−1)
Ri = �ete + Ra

ct + Rc
ct net area specific resistance of the cell

(� cm2) (local)
a =

√
((�a/ta) + (�c/tc))/�ete + Ra

ct + Rc
ct =√

r
a
l
t
o
i
b
d
f
t
p

2

a
a
c

2

a
f
t
c

or

dϕa(x)
dx

= −I(x)
�a

ta
(3)
((�a/ta) + (�c/tc))/Ri inverse characteristic
length (cm−1)

esistances. Two types of current collection strategies are evaluated
nd the corresponding values of cell resistance as a function of cell
ength are determined. Based on these calculations, strategies for
he design of tubular cells are presented. Additionally, the effect
f temperature on cell performance is qualitatively addressed. It
s shown that differences in the schemes of current collection
etween planar and tubular cells also translate into fundamental
ifferences in the temperature dependence of stack/bundle per-
ormance. Experimental results on the effect of temperature on
he performance of a planar (button) cell and a tubular cell are
resented.

. Analysis

In what follows, an analysis is presented for current collection
t one end of the cell and at the opposite ends of the cell. Using this
nalysis, it is shown that the best case scenario consists of current
ollection at both ends.

.1. Current leads at one end
The following are simplified calculations of current collection
nd performance of a tubular SOFC. The calculations are given
or unit thickness along the cell circumference. It is assumed that
he thicknesses of the various layers are much smaller than the
ell diameter, and the cell diameter is much smaller than the cell
urces 195 (2010) 4816–4825 4817

length.1 This assumption is consistent with typical cell dimensions,
namely, cell thickness ∼0.1 cm, cell diameter ∼1 cm, and cell length
∼10 cm. The calculations are given with the assumption that oxi-
dant and fuel compositions do not vary substantially along the
length of the cell, which allows one to assume that the Nernst
voltage is the same along the length of the cell. In reality, such
an assumption may not be accurate for operation at very high fuel
and oxidant utilizations, although it is applicable to the vast major-
ity of practical situations. This assumption also allows for simple
analytical solutions and is thus deemed of interest for preliminary
design considerations and the selection of design parameters for
tubular solid oxide fuel cells (SOFC). These solutions also facilitate
the prediction of the temperature dependence of the performance
of tubular SOFC, not previously reported in studies based on numer-
ical models.

Fig. 1(a) shows a schematic of a cell of length � with current col-
lection at one end. The lengths of arrows in the electrodes (anode
and cathode) qualitatively indicate the magnitude of local current –
higher close to the current collection tabs and progressively lower
at the opposite end. Within the electrolyte, this is shown quali-
tatively by the spacing between vertical arrows; smaller distance
between arrows closer to the current collection tabs indicating
higher local current density. At any position along the length of the
tube, x, the magnitudes of the current in the anode and the cathode
are the same, but their directions are opposite. Fig. 1(b) is a detailed
cross-section of the upper side of the cell showing the directions
of currents; this cross-section identifies the various cell parame-
ters. The various resistivities are: �e = electrolyte ionic resistivity
(� cm); �a = anode electronic resistivity (� cm); and �c = cathode
electronic resistivity (� cm). For the case of graded electrodes,
e.g., with applied current collector layers (e.g. copper at anode,
silver at cathode), the electronic resistivities refer to appropriate
averages including any geometric factors. The various thicknesses
are: te = electrolyte thickness (cm), ta = anode thickness (cm), and
tc = cathode thickness. The area specific polarization resistances
are: Ra

ct = anode polarization resistance (� cm2) and Rc
ct = cathode

polarization resistance (� cm2). The area specific resistance of a
cell element or tri-layer (cathode/electrolyte/anode) is given by
Ri = �ete + Ra

ct + Rc
ct in � cm2.

It is assumed that �e >> �a, �c , which is typically the case.
An equivalent circuit for an element of the cell between x and

x + dx is shown in Fig. 2.
The units of Ri/dx·1 are �. The ‘1’ in the denominator refers to

unit length along the circumference. If the cell radius is r, then the
resistance of the element will be given by Ri/dx·2�r.

The electrical potential difference between the cathode and the
anode at position x is given by

ϕc(x) − ϕa(x) = Eo + Ri
dI(x)

dx
(1)

Eq. (1) is based on simple application of the Ohm’s law for the
cell element of length dx with internal voltage source Eo. Note also
that

ϕa(x + dx) − ϕa(x) = −I(x)
�a

ta
dx (2)
1 The analysis given here is applicable even if the diameter is not much greater
than the thickness, or even if the cell cross-section is not circular (may be elliptical).
These geometric factors can be readily included in the analysis without altering the
basic approach and the resulting forms of the differential equations.
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I(�) = 0 = b1 exp[−a�] + b2 exp[a�] (16)

Solving Eqs. (15) and (16), we obtain

b2 = − Eo − Et

aRi{1 + exp[2a�]} (17)
Fig. 1. (a) A schematic of a tubular cell with current leads at one end. (b) A cut

imilarly,

c(x) − ϕc(x + dx) = −I(x)
�c

tc
dx (4)

r

dϕc(x)
dx

= I(x)
�c

tc
(5)

his gives

dϕc(x)
dx

− dϕa(x)
dx

= d

dx
(ϕc(x) − ϕa(x)) = I(x)

(
�a

ta
+ �c

tc

)
(6)

ifferentiating Eq. (1) with respect to x, we get

d

dx
(ϕc(x) − ϕa(x)) = Ri

d2I(x)
dx2

(7)

rom Eqs. (6) and (7)

i
d2I(x)

dx2
=

(
�a

ta
+ �c

tc

)
I(x) (8)

hich is an ordinary second order differential equation.
One can therefore write

2 = (�a/ta) + (�c/tc)
�ete + Ra

ct + Rc
ct

= (�a/ta) + (�c/tc)
Ri

(9)

r

=
√

(�a/ta) + (�c/tc)
�ete + Ra

ct + Rc
ct

=
√

(�a/ta) + (�c/tc)
Ri

(10)

here a has units of cm−1. Thus, the differential equation is

d2

dx2
− a2

)
I(x) = 0 (11)
he general solution to Eq. (10) is

(x) = b1 exp[−ax] + b2 exp[ax] (12)

here b1 and b2 are constants.
owing the directions of currents and identification of the various parameters.

Note that the voltage difference between the cathode and the
anode at position x is given by

ϕc(x) − ϕa(x) = Eo + Ri
dI(x)

dx
= Eo + Ri{−b1a exp[−ax]

+ b2a exp[ax]} (13)

The terminal voltage, Et, is that corresponding to x = 0. That is,

Et = ϕc(0) − ϕa(0) = Eo + Ria(b2 − b1) (14)

which gives

b2 = b1 + Et − Eo

aRi
(15)

We also know that
Fig. 2. An equivalent circuit for the cell element between x and x + dx.
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I (x) = − = − (32)
ig. 3. A schematic of voltage vs. current plot. The magnitude of the slope equals
he cell resistance, Rcell .

nd

1 = Eo − Et

aRi

exp[2a�]
{1 + exp[2a�]} (18)

ote that Et ≤ Eo, thus b1 > 0 and b2 < 0.
The general equation for the potential difference ϕc(x) − ϕa(x)

s given by

c(x) − ϕa(x) = Eo − (Eo − Et)

{
exp[2a�] exp[−ax] + exp[ax]

exp[2a�] + 1

}
(19)

lso note that

dI(x)
dx

= −Eo − Et

Ri

{exp[2a�]exp[−ax] + exp[ax]}
{1 + exp[2a�]} < 0 (20)

he terminal current per unit circumference, that is the externally
easured current, is given by

(0) = b1 + b2 (21)

r

(0) = Eo − Et

aRi

{exp[2a�] − 1}
{exp[2a�] + 1} (22)

he net power per unit circumference is given by

= EtI(0) (23)

r

= Et(Eo − Et)
aRi

{exp[2a�] − 1}
{exp[2a�] + 1} (24)

The net cell resistance per unit circumference is obtained by
lotting the terminal voltage, Et, vs. the terminal current, I(0), as
hown in Fig. 3. Its analytical form is given by

cell = Eo − Et

I(0)
= aRi

{exp[2a�] + 1}
{exp[2a�] − 1} (25)

e consider a cell of length �. The limits of the cell resistance are
s follows.

Limit 1: 2a� → ∞ (which corresponds to a → ∞ since cell length
s finite). This corresponds to a very large sheet resistance, charac-
erized by very high ((�a/ta) + (�c/tc)). This gives Rcell → aRi → ∞,
learly an undesirable situation.

Limit 2: 2a� → 0 (which corresponds to a → 0). This corre-
ponds to a negligible sheet resistance, characterized by a very
ow ((�a/ta) + (�c/tc)). This gives Rcell → Ri/�. This is the desired

ituation, but unlikely to be realized in practice.

In the limit the cell length goes to zero, that is as � → 0 (for a
onzero a), note that Eq. (25) gives Rcell → ∞. This represents cell
esistance approaching infinity due to a very small active area. This
imit is of no interest as it simply represents negligible active area,
urces 195 (2010) 4816–4825 4819

and thus is not discussed further. All calculations given here are for
a sufficiently large cell length.

Note that we have made calculations for unit circumference. For
a tube circumference of 2�r, the net cell resistance is given by

Rcell = Eo − Et

I(0)
= aRi

2�r

{exp[2a�] + 1}
{exp[2a�] − 1} (26)

For a tube circumference of 2�r, right hand sides of Eqs. (22) and
(24) should be multiplied by 2�r to obtain, respectively net current
and net power per cell.

Returning to Eq. (25), the cell resistance attributable to the sheet
resistance (current collection) is thus given by

Rsheet = Rcell − Ri

�
= aRi

{exp[2a�] + 1}
{exp[2a�] − 1} − Ri

�
(27)

For a large sheet resistance, the first term may dominate the cell
resistance and thus dictate performance. Note that in the limit � →
∞, the cell resistance is given by

Rcell = aRi

Lim � → ∞ (28)

and the sheet resistance is given by

Rsheet = aRi − Ri

�
= aRi

Lim � → ∞
(29)

That is, in such a case, virtually all of the cell resistance is
attributable to the sheet resistance.

2.2. Current leads at opposite ends of the cell (across the length of
the cell)

This is the case wherein one of the external leads is connected to
the anode at one end, and the other external lead is connected to the
cathode at the other end. At the outset, note that as the current leads
are connected to opposite ends of the cell, for very long cell lengths,
the cell resistance will diverge. Thus, it is understood that current
collection cannot be achieved with current leads at opposite ends of
cell if the cell is too long. However, it is not unreasonable to expect
that for cells not too long, current collection at opposite ends may
be an option if it provides practical advantages in design, assembly
and operation. The following analysis is given with this purpose in
mind. The current collection scheme is shown in Fig. 4(a). A detailed
cross-section of the upper side of the cell is given in Fig. 4(b). In
this case currents through the anode and the cathode are in the
same direction. The total current is fixed, not a function of x, and
is a sum of currents through the cathode and the anode. At the left
end, the anode current is high but the cathode current is negligible.
From left to right, the anode current decreases while the cathode
current increases. The lengths of the arrows qualitatively represent
the magnitude of the local current.

In this case, both the current in the cathode and the anode are
in the same direction. Also, because of Kirchoff’s laws, we have

Ia(x) + Ic(x) = I (30)

where I is the total current.
Thus, note that

dIa(x) = −dIc(x) (31)

Note also that

ta · 1 dϕa(x) ta dϕa(x)

a �a dx �a dx

and

Ic(x) = − tc · 1
�c

dϕc(x)
dx

= − tc

�c

dϕc(x)
dx

(33)
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ig. 4. (a) A schematic of a tubular cell with current leads at opposite ends. (b) A cu

lso, we have

c(x) − ϕa(x) = Eo − Ri
dIc(x)

dx
= Eo + Ri

dIa(x)
dx

(34)

ifferentiating Eq. (34)

dϕc(x)
dx

− dϕa(x)
dx

= −Ri
d2Ic(x)

dx2
= Ri

d2Ia(x)
dx2

(35)

rom Eqs. (32), (33), and (35), we can write

d2Ic(x)
dx2

− a2Ic(x) =
(

d2

dx2
− a2

)
Ic(x) = − �aI

taRi
(36)

he general solution to Eq. (36) is given by

c(x) = b′
1 exp[−ax] + b′

2 exp[ax] + b′
3 (37)

ubstitution of this general solution into Eq. (36) gives

′
3 = �a/ta

(�a/ta) + (�c/tc)
I (38)

hus,

c(x) = b′
1 exp[−ax] + b′

2 exp[ax] + �a/ta

(�a/ta) + (�c/tc)
I (39)

lso, it is seen from Eqs. (30) and (39) that

a(x) = −b′
1 exp[−ax] − b′

2 exp[ax] + �c/tc

(�a/ta) + (�c/tc)
I (40)

gain, limiting values of cell resistance can be computed. The limits
re as follows.

Limits: When x = 0, we have Ic(x) = 0.
When x = �, we have Ic(x) = I

Substituting x = � into Eqs. (39) and (40), and solving for b′

1 and
′
2 gives

′
1 = −{1 + (�a/ta)/((�a/ta) + (�c/tc)){exp[a�] − 1}}

{exp[a�] − exp[−a�]} I = b′′
1I (41)
howing the directions of current and identification of the various parameters.

where

b′′
1 = −{1 + (�a/ta)/((�a/ta) + (�c/tc)){exp[a�] − 1}}

{exp[a�] − exp[−a�]} (42)

and

b′
2 =

{
1 + (�a/ta)/((�a/ta) + (�c/tc)){exp[a�] − 1

}
}

{exp[a�] − exp[−a�]} I

− �a/ta

(�a/ta) + (�c/tc)
I = b′′

2I (43)

where

b′′
2 = {1 + (�a/ta)/((�a/ta) + (�c/tc)){exp[a�] − 1}}

{exp[a�] − exp[−a�]}

− �a/ta

(�a/ta) + (�c/tc)
(44)

Note that b′
1 and b′

2 are linearly proportional to the net current I,
and thus, as-defined, b′′

1 and b′′
2 are independent of current.

It is easily verified that

Ic(0) = b′
1 + b′

2 + b′
3 = 0 (45)

Integration of Eqs. (32) and (33) gives

ϕc(x) = �cb′
1

tca
exp[−ax] − �cb′

2
tca

exp[ax] − �cb′
3

tc
x + C1 (46)

and

ϕa(x) = −�ab′
1

taa
exp[−ax] + �ab′

2
taa

exp[ax] − �aI

ta
x + �ab′

3
ta

x + C2 (47)

We now need to determine the constants C1 and C2, which are
functions of the other parameters and the net current. Let us set

ϕa(0) = 0, that is the anode at x = 0 is connected to ground. This
gives

C2 = �a

ata
(b′

1 − b′
2) (48)
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Since b′
1 and b′

2 are linearly proportional to the current I, it is
lear that C2 is also linearly proportional to the current I. From Eq.
34) upon substitution of (46) and (47) we obtain

c(x) − ϕa(x) = Eo + Riab′
1 exp[−ax] − Riab′

2 exp[ax] (49)

At open circuit, I = 0, thus b′
1 = 0, b′

2 = 0, and b′
3 = 0, and also

hen

c(x) − ϕa(x) = ϕc(x1) − ϕa(x2) = Eo (50)

or any values of x1 and x2 along the length of the cell. Note that at
pen circuit, we also have ϕc(x1) − ϕa(x2) = C∗

1 − C∗
2, where C∗

1 and
∗
2 are the constants C1 and C2 at open circuit (zero current). But,
∗
2 = 0, since the current is zero. It is readily seen that C∗

1 = Eo.
The general expression for ϕc(x) − ϕa(x) using Eqs. (32) and (33)

s given by

c(x) − ϕa(x) = (�a/ta) + (�c/tc)
a

{b′
1 exp[−ax]

−b′
2 exp[ax]} + C1 − C2 (51)

Substituting x = 0 in Eq. (51) and substituting for C2 from Eq. (48)
ives

c(0) − ϕa(0) = �c

(
b′

1 − b′
2

tca

)
+ C1 (52)

lso from Eq. (49), we have

c(0) − ϕa(0) = Eo + Ria(b′
1 − b′

2) (53)

rom Eqs. (52) and (53), note that

1 = Eo +
(

Ria − �c

tca

)
(b′

1 − b′
2) (54)

Thus, from Eq. (51), the difference, ϕc(x) − ϕa(x), can be esti-
ated.
Consider the case corresponding to a very low sheet resistance,

haracterized by a� → 0. It can be shown that in this limit

′
1 → − I

2a�
and b′

2 → I

2a�
− �a/ta

(�a/ta) + (�c/tc)
I → I

2a�

nd, the corresponding potential difference is given by

c(x) − ϕa(x) = ϕc(x1) − ϕa(x2) = Eo − I
Ri

�
(55)

That is, for zero sheet resistance, the total cell resistance is given
y Ri/� · 1 in ohms, which not surprisingly, is identical to the case
here the external leads are connected to one end of the cell. This

s because if both the anode and the cathode are highly conductive,
hey are equi-potential regions. For this reason, under such condi-
ions, ϕc(x1) − ϕa(x2) is independent of position along the cathode
nd anode surfaces, and is given by Eq. (55). This is the desired
ituation, but unlikely to be realized in practice.

Now our objective is to obtain

c(�) − ϕa(0) = �c(�) = Et (56)

here Et is the terminal voltage (across the length of the cell). Then,
he net cell resistance per unit circumference is given by

cell = Eo − Et

I
(57)

The general equation for ϕc(x) upon substitution for C1 from Eq.
54) into (46) is given by
c(x) = Eo + �cb′
1

tca
exp[−ax] − �cb′

2
tca

exp[ax]

−�cb′
3

tc
x +

(
aRi − �c

atc

)
(b′

1 − b′
2) (58)
urces 195 (2010) 4816–4825 4821

Thus, the terminal voltage is given by

Et = ϕc(�) = Eo + �cb′
1

tca
exp[−a�]

−�cb′
2

tca
exp[a�] − �cb′

3
tc

x +
(

aRi − �c

atc

)
(b′

1 − b′
2) (59)

Therefore, the net cell resistance per unit circumference from
Eqs. (38), (42), (44), (57) and (59) is given by

Rcell =
{

−�cb′′
1

tca
exp[−a�] + �cb′′

2
tca

exp[a�] + �a�c/tatc

(�a/ta) + (�c/tc)
�

−(b′′
1 − b′′

2)
(

aRi − �c

atc

)}
(60)

The net current per unit circumference is given by

I = Eo − Et

Rcell
(61)

and the net power per unit circumference is given by

P = EtI = Et(Eo − Et)
Rcell

(62)

Eqs. (60), (61) and (62) are for unit circumference. For a circum-
ference of 2�r, the requisite values are obtained by dividing the
right hand side of Eq. (60) by 2�r to obtain the net cell resistance,
and multiplying the right hand sides of Eqs. (61) and (62) by 2�r to
obtain, respectively the net current and the net power.

Returning to Eq. (60), note that the cell resistance attributable
to the sheet resistance is given by

Rsheet = Rcell − Ri

�
(63)

where Rcell is given by Eq. (60). An examination of Eq. (60) shows
that as the cell length goes to infinity, the Rcell also goes to infinity.
That is,

Rcell → ∞
Lim � → ∞ (64)

and

Rsheet → ∞
Lim � → ∞ (65)

This of course is to be expected as current collection is across
opposite ends of the cell. Thus, if cell length goes to infinity, the cell
resistance also goes to infinity. Obviously, cell length cannot be too
large if this mode of current collection is selected for any possible
practical and design advantages.

2.3. Comparison between current leads at one end vs. current
leads at opposite ends

The relevant equations for the cell resistance are Eqs. (25) and
(60). It is clear that the two values of Rcell, not surprisingly, are
different. We have seen, however, that in the limit a� → 0 (very low
sheet resistance), both solutions approach an identical limit. As a
further verification of the two equations, we will consider the limits
for two cases; a highly conductive anode and a highly conductive
cathode.

2.4. Anode is highly conductive, that is �a/ta → 0, but not the

cathode

In such a case, the anode is an equi-potential region. Thus, in
this case, both solutions should approach an identical limit. It can
be readily shown that this in fact is the case. That is, both Eqs. (25)
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Table 1
Calculated cell resistance and sheet resistance (given in parentheses) for current collection at one end, at opposite ends, their ratio, and cell resistance for current collection
at both ends.

�a (� cm) �c (� cm) Rcell (� cm)
current collection
at one end (sheet
resistance)

Rcell (� cm)
current collection
at opposite ends
(sheet resistance)

Ratio Rcell (� cm)
current collection
at both ends
(sheet resistance)

a
(

R

N

a

2
a

t
c
l

R

N

a

2

c
i
l
f

R

w
a
A
r

a

f
t

ct
these three contributions are thermally activated; they decrease
with increasing temperature. Thus, in planar cells/stacks, the per-
formance generally increases with increasing temperature. Fig. 5
shows plots of voltage and power density vs. current density for a
10−3 10−2 0.1658 (0.1408)
10−3 10−3 0.0712 (0.0462)
10−4 10−4 0.0313 (0.0063)

nd (60) exhibit the following limit when �a/ta is set to zero in Eqs.
25) and (60), namely

cell =
√

�cRi

tc

{exp[2a�] + 1}
{exp[2a�] − 1} (66)

ote that in this case

=
√

�c

tcRi
=

√
�c

tc(�ete + Ra
ct + Rc

ct)
(67)

.5. Cathode is highly conductive, that is �c/tc → 0, but not the
node

In such a case, the cathode is an equi-potential region. Thus, in
his case also, both solutions should approach an identical limit. It
an be readily shown that both Eqs. (25) and (60) exhibit the fol-
owing limit when �c/tc is set to zero in Eqs. (25) and (60), namely

cell =
√

�aRi

ta

{exp[2a�] + 1}
{exp[2a�] − 1} (68)

ote that in this case

=
√

�a

taRi
=

√
�a

ta(�ete + Ra
ct + Rc

ct)
(69)

.6. Current leads at both ends

An extension of the two modes of current collection is the third
ase, where the current is collected at both ends. The correspond-
ng solution is simply the resistance corresponding to half the cell
ength with current collection at one end divided by two. That is,
or this case, the net cell resistance is given by

cell = Eo − Et

I(0)
= aRi

2
{exp[a�] + 1}
{exp[a�] − 1} (70)

The preceding equation represents the resistance of the cell
hen anode current collection tabs are connected to each other

nd cathode current collection tabs are connected to each other.
s the cell length goes to infinity, the limiting values of the cell
esistance and sheet resistance are

Rcell = aRi

2
Lim � → ∞

(71)

nd

Rsheet = aRi

2
− Ri

�
= aRi

2 (72)

Lim � → ∞

Note that as the cell length goes to infinity, the cell resistance
or current collection at both ends (Eq. (71)) is exactly half that for
he case where the current collection is only at one end (Eq. (28)).
0.2298 (0.2048) 1.386 0.08313 (0.05813)
0.0898 (0.0648) 1.2612 0.0398 (0.0148)
0.0317 (0.0067) 1.0128 0.02664 (0.00164)

2.7. Numerical calculations

In what follows, numerical calculations are presented with the
objective being to compare the two different cases, and determine
which arrangement gives the lowest cell resistance and thus the
highest performance. That is, the objective is to determine if the
external leads should be connected to the cathode and the anode
at the same end or the opposite ends.

We will assume Ri = 0.25 � cm2, ta = 0.1 cm, tc = 0.1 cm, and � =
10 cm. Thus, the cell resistance per unit circumference with-
out including the sheet resistance is given by Ri/� = 0.025 � cm.
Table 1 gives the calculated Rcell (for unit circumference) for the
three cases – current leads at one end, current leads at opposite
ends, and current leads at both ends.

Table 1 shows that the cell resistance is higher if the current
leads are at opposite ends (external terminals connected to the
cathode and the anode at the opposite ends of the cell) rather than
at one end. The higher the sheet resistance, the greater is this dif-
ference. Thus, it is preferable to connect the current leads at one
end, especially if the sheet resistance is high. The best case sce-
nario is when current is collected at both ends. The corresponding
resistance is also given in this table.2 If the electrical conductances
of both the cathode and the anode are very high so that both can
be considered as equi-potential surfaces, all three modes of current
collection give the same cell resistance. In practice, this is generally
not possible for cell lengths of interest (several cm or a few tens of
cm). Thus, a suitable choice should be made. Again, the best choice
is current collection at both ends.

The table also gives contribution of the sheet resistance to the
total cell resistance. Note that for anode and cathode resistivities
of 10−3 and 10−2 � cm (and higher), respectively, for a 10 cm long
cell, the sheet resistance dominates the net resistance. The impli-
cations of these results concerning the temperature dependence of
cell performance are discussed in what follows.

2.8. Temperature dependence of cell performance

In a planar fuel cell stack (or a repeat unit comprising a cell
and an interconnect), usually the main contribution to the total
resistance is due to the cell and the contact resistances. The sheet
resistance is typically small. Thus, for a planar cell/stack, the main
contribution to the area specific resistance is from Ri and possible
contact resistances. The terms in Ri are; �e = the ionic resistivity
of the electrolyte, Ra

ct = the anode activation polarization resis-
tance, and Rc = the cathode activation polarization resistance. All
2 This result is in agreement with prior published numerical results [7–10]. The
present closed form analytical solutions permit the evaluation of the role of var-
ious parameters in a straightforward manner, which is difficult using numerical
approaches.
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of tubular cells may actually decrease with increasing tempera-
ture. Thus, when using tubular cells, an indefinite increase in cell
performance with increasing temperature is not expected, unlike
ig. 5. Performance curves (LSM + YSZ/YSZ/Ni + YSZ) on a button (planar) solid oxide
uel cell. Note the increase in power density between 600 and 800 ◦C with increasing
emperature. In this case, current collection losses are small.

lanar button cell over the temperature range from 600 and 800 ◦C.
ote the rapid rise in power density with increasing temperature

n Fig. 5.
In tubular cells, as discussed herein, the sheet resistance due

o the current path along the length of the cell can be significant.
able 1 shows for example that for typical values of electronic
esistivities of cathode and anode, �a and �c, a significant con-
ribution to the net cell resistance in a 10 cm long cell is due to
he sheet resistance. The anode typically contains Ni metal. Its
esistivity �a increases with increasing temperature. Temperature
oefficients of resistivities of most metals are well known and can
e found in standard handbooks. In most cases, the cathode is a
erovskite containing transition metal ions. Depending upon the
opant concentration and temperature, these materials can also
xhibit metallic behavior at high temperatures – that is, in many
ases, �c also increases with increasing temperature. Additionally,
ften a silver screen is used as a current collector at the cathode,
hose resistance increases with increasing temperature. Thus, as

he temperature increases, the Ri decreases but �a and �c increase.
At low temperatures, the Ri will likely be large and will dictate

erformance. The net effect is that depending upon the relative
alues of the various parameters, the net cell resistance, Rcell, will
nitially decrease with increasing temperature thus increasing per-
ormance with increasing temperature. This for example is the case
ith studies on micro-tubular SOFC conducted at low temperatures

y Suzuki et al. [8]. However, at sufficiently high temperatures, and
epending upon the cell length, the Ri may become a small part
f the total cell resistance. Under such conditions, the net Rcell can
ctually increase with increasing temperature. As a result, the cell
erformance will initially increase with increasing temperature,
ut it may later actually decrease with increasing temperature.

A qualitative assessment of the temperature dependence of the
ell resistance, Rcell, can be readily made to determine the minimum
ell resistance achievable as a function of temperature. This is dis-
ussed in what follows. Consider for example current collection at
oth ends, given by Eq. (70) reproduced below:

= Eo − Et = aRi {exp[a�] + 1}

cell I(0) 2 {exp[a�] − 1}

=
√

Ri((�a/ta) + (�c/tc))

2
{exp[a�] + 1}
{exp[a�] − 1} (73)
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The anode and cathode (including current collection layers
which are metallic) are expected to exhibit temperature depen-
dence of the form(

�a

ta
+ �c

tc

)
≈ A + BT (74)

where A and B are positive constants. The area specific resistance
of the tri-layer (cathode–electrolyte–anode), Ri, contains all terms
that obey Arrhenius-type relations. In most cases over a typical
temperature range of interest, the Ri may be given by an equation
of the form

Ri ≈ Ro
i exp

[
Q

RT

]
(75)

where Ro
i

is a constant and Q is the activation enthalpy. An exami-
nation of Eqs. (10) and (73) show that as the temperature increases,
a� increases, and the factor {exp[a�] + 1}/{exp[a�] − 1} decreases.
The lowest possible value {exp[a�] + 1}/{exp[a�] − 1} can have
is unity. The factor

√
(Ri((�a/ta) + (�c/tc)))/2 is of the form

((A + BT) exp[Q/RT])1/2. Note that as the temperature approaches
zero (mathematical limit only), the factor ((A + BT) exp[Q/RT])1/2

goes to infinity. Note also that as the temperature goes to infin-
ity, the factor ((A + BT)exp[Q/RT])1/2 goes to infinity. Clearly, the
factor ((A + BT) exp[Q /RT])1/2 goes through a minimum at some
temperature. The preceding discussion shows that the Rcell itself
goes through a minimum at some temperature. If the temperature
dependencies of �a, �c, Ri are known and all geometric parameters
are known, it is a straightforward matter to determine the temper-
ature at which the lowest possible cell resistance (including current
collection) occurs by setting the derivative of Rcell with temperature
to zero; that is,

dRcell

dT
= 0 (76)

This allows for the determination of the temperature at which
a tubular cell should be operated to obtain the maximum per-
formance. The value of simple closed form solutions, such as the
ones presented here, lies in their ability to describe the functional
dependence on various operating parameters (such as temperature
dependence demonstrated here) which is generally not possible
with numerical solutions. Once preliminary design parameters (e.g.
electrode thicknesses and cell length for a given set of fundamen-
tal parameters, namely �e, �a, �c, Ra

ct , and Rc
ct) have been identified

using the analytical model described here, the next step will be to
conduct a detailed numerical analysis for fine tuning.

Fig. 6 shows the results of performance tests on a tubular cell
over a temperature range between 650 and 850 ◦C. It is to be noted
that the observed increase in performance with increasing tem-
perature is modest compared to that observed for the planar cell
(Fig. 5). Also, it is observed that the performance increase between
800 and 850 ◦C is much lower than between 750 and 800 ◦C, which
is lower than between 700 and 750 ◦C. Note also the performance of
the tubular cell is lower than that of the planar cell even though the
cell materials and microstructures of the two cells are essentially
the same. This is consistent with the analysis and discussion pre-
sented here. This is because with increasing temperature, the sheet
resistance increases, and becomes the dominant contribution. It
is expected that at even higher temperatures, the performance
in planar cells.3 From an experimental standpoint, whenever an

3 Even in planar cells, sheet resistance can be significant if the distance between
current collection ribs is too large as discussed previously [12].
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ig. 6. Performance tests on a tubular solid oxide cell over a temperature range be
etween 750 and 850 ◦C is modest. This is due to the performance being limited b
button) cell.

bservation is made that cell performance does not appear to sig-
ificantly increase with increasing temperature, it is an indication
hat current collection losses are limiting the overall performance.

.9. Current collection spines

The present analysis and experimental observations have
emonstrated that significant losses occur in current collection in
ubular solid oxide fuel cells. This conclusion is in accord with prior

eported work [7–11]. A possible approach to minimizing voltage
osses is to introduce current collection ‘spines’ on both the cath-
de and the anode [13]. A schematic of one such design is shown
n Fig. 7. Although not shown in Fig. 7, the spines extend beyond

ig. 7. Seven cells connected in parallel with cathode and anode current collection
pines. The spines are designed (materials and thicknesses) to ensure minimal cur-
ent collection losses and minimal stresses. The hexagonal housing is an electrical
nsulator. Connections are made at the ends.
650 and 850 ◦C. Note that the performance increase with increasing temperature
rent collection losses. Note also the lower power density compared to the planar

the circular cells so that the external connections are made outside
of the hot zone. The objective is to design the spines such that the
term ((�a/ta) + (�c/tc)) is made as small as possible. The calcula-
tions can be readily extended to the case with multiple layers. The
spines can be made respectively of the same materials as the cath-
ode and anode but of higher density (lower porosity) to lower their
electronic resistivities while at the same time minimizing stresses
related to thermal expansion mismatch. If �s

a and �s
c are respec-

tively the electronic resistivities of the anode and cathode spines, ts
a

and ts
c are respectively anode and cathode spine thicknesses, and if

�s
a and �s

c are respectively dimensionless parameters describing the
geometries of the anode and cathode spines which account for dif-
fering cross-sectional geometries, then the term ((�a/ta) + (�c/tc))
may be replaced by ((�a/ta) + (�c/tc)), where

(
�a

ta

)
= 1

(ta/�a) + �s
a(ts

a/�s
a)

(77)

and

(
�c

tc

)
= 1

(tc/�c) + �s
c(ts

c/�s
c)

(78)

Our objective is to design the spines (materials and geometries),
such that ((�a/ta) + (�c/tc)) is as small as possible. We will thus
define the parameter a by the following equation, namely

a =

√
(�a/ta) + (�c/tc)
�ete + Ra

ct + Rc
ct

=
√

(�a/ta) + (�c/tc)
Ri

(79)

Our objective then is to make a as small as possible (for a given
Ri), while still ensuring as low an Ri as possible. In typical anode-

supported cells made using standard materials (YSZ, LSM, and Ni),
it is possible to achieve Ri ∼ 0.25 � cm2, and as low as ∼0.15 � cm2

at 800 ◦C. Even smaller values are possible. The smaller the value of
Ri, the more important it is to design the spines for the best possible
current collection.
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. Summary

A transmission line model is presented which leads to closed
orm solutions for the cell resistance of tubular solid oxide fuel
ells with axial current collection. The model takes into account
arious specific resistances of the electrolyte, the electrodes, the
olarization resistances, electrode (current collector) thicknesses,
nd the cell length. Two modes of current collection were ana-
yzed; one where the current collection is at one end, and the other

here the current collection is at opposite ends. Simple second
rder ordinary differential equations were obtained and solved to
etermine the net cell resistance. They include contributions from
he fundamental cell parameters, namely, the electrolyte specific
esistance, polarization specific resistances and resistance associ-
ted with the transmission of current along the length of the cell
o current collection tabs. The cell resistance is lower for current
ollection at one end. The best case scenario consists of current
ollection at both ends, for which the cell resistance is the low-
st. This mode of current collection also has the advantage of a
uilt-in redundancy – even if a cell is damaged in the middle, cur-
ent collection continues at some level thus increasing the overall
fficiency.

In tubular cells, the sheet resistance associated with current
ollection can dominate cell resistance and thus cell performance.
he sheet resistance is primarily associated with current collec-
ion, which typically includes metallic materials whose electrical
esistance increases with increasing temperature. If the sheet resis-
ance is large, the cell performance may not continue to increase
ith increasing temperature unlike planar cells, but may in fact

ecrease with increasing temperature. This an important consider-
tion in the design of tubular SOFC typically not encountered in the
esign of planar stacks. An effective way to minimize current col-

ection losses in tubular SOFC is the introduction of spines. A design
ncorporating spines is proposed.

[
[
[
[

urces 195 (2010) 4816–4825 4825

The results of analysis presented can be readily used to design
tubular SOFC provided fundamental parameters have been mea-
sured on given cell/materials, e.g., �e, �a, �c, Ra

ct , and Rc
ct , and

preferably over a range of temperatures. Such measurements can
be made on small button cells and specially prepared samples for
characterization. Then using Eq. (25) for current collection at one
end or Eq. (70) for current collection at both ends, the cell resis-
tance can be estimated for given values of various thicknesses and
cell length. This information can be used for design purposes. If
the temperature dependence of the various parameters is known,
the operating temperature at which the best performance can be
realized can also be determined by the procedure described here.
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